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Spectral Degeneracies in the Totally Asymmetric
Exclusion Process
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We study the spectrum of the Markov matrix of the totally asymmetric exclu-
sion process (TASEP) on a one-dimensional periodic lattice at arbitrary filling.
Although the system does not possess obvious symmetries except translation
invariance, the spectrum presents many multiplets with degeneracies of high
order when the size of the lattice and the number of particles obey some sim-
ple arithmetic rules. This behaviour is explained by a hidden symmetry prop-
erty of the Bethe Ansatz. Assuming a one-to-one correspondence between the
solutions of the Bethe equations and the eigenmodes of the Markov matrix, we
derive combinatorial formulae for the orders of degeneracy and the number of
multiplets. These results are confirmed by exact diagonalisations of small size
systems. This unexpected structure of the TASEP spectrum suggests the exis-
tence of an underlying large invariance group.
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1. INTRODUCTION

The asymmetric simple exclusion process (ASEP) is a driven lattice gas
model in which particles interact by hard core exclusion. This simple
system has been introduced as a building block for models of hopping
conductivity, motion of RNA templates, traffic flow and surface growth.
From a theoretical point of view, the ASEP plays a fundamental role
in the study of non-equilibrium processes:(16) many exact results have
been obtained concerning one-dimensional phase transitions,(3) phase seg-
regation,(7) large deviations functions and fluctuations far from equilib-
rium.(5) For a review, see refs. 2 and 15. In the absence of a driving field,
the symmetric exclusion process can be mapped into the Heisenberg spin
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chain. The asymmetry due to a non-zero external driving field breaks the
left/right symmetry and the ASEP is equivalent to a non-Hermitian spin
chain of the XXZ type. The ASEP can also be mapped into a two-dimen-
sional six-vertex model at equilibrium. These mappings allow to use the
methods of integrable systems, such as the Bethe Ansatz.(6,11,12)

In a recent article,(10) we carried out a spectral study of the Markov
matrix of the exclusion process on a periodic lattice. At half-filling the
system is invariant under charge conjugation combined with reflection in
addition to being translation invariant. We showed that these symmetries
predict the existence of singlets and doublets in the spectrum. However,
for the totally asymmetric simple exclusion process (TASEP) the spectral
structure is much richer. We observed numerically that unexpected degen-
eracies of higher order exist. Moreover almost all the eigenvalues of the
spectrum have a degeneracy exponentially large with the system size L

when L→∞. We explained, in an heuristic manner, the existence of these
degeneracies by using the fact that some of the solutions of the Bethe
equations appear in pairs with opposite values.

In the present work, we generalize our previous study to the TASEP
at arbitrary filling. We perform an exhaustive analysis of the spectral
degeneracies of the TASEP on a periodic lattice. The orders of degen-
eracies observed and the number of multiplets with a given degeneracy
depend on commensurability relations between the number of sites and
the number of particles. Although the Bethe equations do not exhibit any
obvious symmetry, we find that they possess an invariance under exchange
of roots. By assuming a one-to-one mapping between the solutions of
the Bethe equations and eigenvalues, this invariance leads to combina-
torial formulae for the orders of degeneracies and the number of multi-
plets of a given order of degeneracy. Our formulae are confirmed by direct
numerical diagonalisation of small size systems. This peculiar structure of
the TASEP spectrum suggests the existence of some underlying symme-
tries of the model that may shed light on its remarkable combinatorial
properties.

The outline of this article is as follows. In Section 2, the definition
and basic properties of the TASEP are recalled. In Section 3, we present a
self-contained derivation of the Bethe equations based upon the fact that
the Bethe wave function is a determinant for the TASEP model. The sym-
metries of the Bethe equations are studied in Section 4 and combinatorial
expressions for the degeneracies are derived in Section 5. In Section 6, we
discuss the behaviour of large size systems and present numerical results.
Concluding remarks appear in Section 7. In the Appendix, the geometrical
setting of the roots in the complex plane is briefly described.
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2. THE TASEP MODEL

The simple exclusion process is a stochastic process in which particles
hop on a lattice and respect the exclusion rule that forbids two or more
particles per site. On a one-dimensional lattice, this rule prohibits over-
taking between particles.

In this article we consider a periodic 1d lattice of length L, i.e., a ring
where sites i and i+L are identical. The system is closed and the num-
ber N of particles is fixed with N �L. The filling (or density) is given by
ρ=N/L.

The particles evolve with the following dynamics rule: during the time
interval [t, t + dt ], a particle on a site i jumps with probability dt to the
neighbouring site i+1 if it is vacant. As the jumps are allowed in only one
direction, the model considered is the totally asymmetric exclusion process
(TASEP).

A configuration C of the system is characterised by the list of the N
occupied sites amongst the L available sites. The total number of configu-
rations is therefore

�=
(
L

N

)
= L!
N !(L−N)! . (1)

Let ψt(C) be the probability that the configuration of the system at
time t is C. As the TASEP is a continuous-time Markov (i.e., memoryless)
process, the �-dimensional vector ψt evolves according to the master equa-
tion

dψt

dt
=Mψt, (2)

where M is the �×� Markov matrix. For C �=C′, the term M(C′,C) rep-
resents the transition rate from C to C′: it is equal to 1 if C′ is obtained
from C by an allowed jump of one particle, and is 0 otherwise. The ele-
ment −M(C,C) is equal to the number of allowed jumps from C. Thus, the
sums over columns of the Markov matrix vanish and the total probabil-
ity is conserved. For the exclusion process on a periodic lattice, the sums
over rows of M also vanish: the stationary probability (which corresponds
to the eigenvalue 0) is thus uniform: ψ(C)=1/�.

As the dynamics is ergodic and aperiodic, M satisfies the conditions
of the Perron–Frobenius theorem: the eigenvalue 0 is non-degenerate and
all the other eigenvalues have strictly negative real parts (equal to the
inverse of the relaxation times). As M is a real non-symmetric matrix, the
eigenvalues are either real numbers or complex conjugate pairs.



782 Golinelli and Mallick

In this work, we shall investigate the spectral degeneracies, i.e., equal-
ities amongst the eigenvalues of the Markov matrix.

3. DERIVATION OF THE BETHE EQUATIONS

Since the work of ref. 6, it is known that the Bethe Ansatz can be
applied to the ASEP. In this section, we give a self-contained derivation
of the Bethe equations for the particular case of the TASEP, much simpler
than that of the generic ASEP.(11)

A configuration C will be represented by the sequence (x1, x2, . . . , xN),
the integers xi being the positions of the particles with

1�x1<x2< · · ·<xN �L. (3)

The idea of the Bethe Ansatz consists in writing the eigenvectors ψ of the
Markov matrix as linear combinations of plane waves (see, e.g., ref. 8) In
fact, the Bethe wave function ψ of the TASEP is a determinant.(9) We
therefore define ψ as

ψ(x1, . . . , xN)=det(R), (4)

where R is a N ×N matrix with elements

R(i, j)= z
xj
i

(1− zi)j for 1� i, j �N, (5)

(z1, . . . , zN) being N given complex numbers. If we assume that ψ is of
this form and that it is an eigenvector of M, the zi ’s then must satisfy
some conditions, the Bethe equations, that we now re-derive.

We first show that ψ defined by Eqs. (4, 5) satisfies two identities
which are valid for any values of zi and of xi , even without imposing the
ordering given in Eq. (3). The first identity is

Eψ(x1, . . . , xN)=
N∑
k=1

[ψ(x1, . . . , xk −1, . . . , xN)−ψ(x1, . . . , xk, . . . , xN)],

(6)

for any (x1, . . . , xN) and (z1, . . . , zN), and where E is given by

E=−N +
N∑
i=1

1/zi . (7)
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Equation (6) is obtained by writing

ψ(x1, . . . , xk −1, . . . , xN)−ψ(x1, . . . , xk, . . . , xN)

=det
(
R(i,1), . . . ,

(
1
zi

−1
)
R(i, k), . . . ,R(i,N)

)
. (8)

This determinant is similar to det(R) except for the kth column. Expand-
ing this determinant over all permutations of {1, . . . ,N} and performing
the sum over k=1, . . . ,N leads to Eqs. (6, 7).

The second identity valid for any (z1, . . . , zN) and any (x1, . . . , xN)

with xk−1 =xk (two particles collision), is

ψ(x1, . . . , xk, xk, . . . , xN)−ψ(x1, . . . , xk, xk +1, . . . , xN)=0. (9)

The left hand side of Eq. (9) can be written as det(R̃) where R̃ is a matrix
that is identical to R but for its kth column that is given by

R̃(i, k)= z
xk
i − zxk+1

i

(1− zi)k = z
xk
i

(1− zi)k−1
=R(i, k−1)= R̃(i, k−1). (10)

The (k−1)th and the kth columns of R̃ are equal and, therefore, det(R̃)=
0. This proves Eq. (9).

The eigenvalue equation, Eψ=Mψ , is written as Eq. (6) except that
the sum is restricted to the allowed jumps of particles, i.e., to the indices
k such that xk−1 +1<xk. However, in Eq. (6), the terms with xk−1 +1=xk
vanish thanks to Eq. (9). Thus Eq. (6) is identical to the eigenvalue equa-
tion if the eigenvector has the form assumed in Eqs. (4, 5).

The function ψ must also satisfy periodic boundary conditions

ψ(x1, x2, . . . , xN)=ψ(x2, . . . , xN , x1 +L). (11)

The periodic conditions are the ones that quantify the eigenvalues by impos-
ing a set of equations on the zi ’s, the Bethe equations. Denoting by i and j
the generic row and column indices of the matrices, respectively, we have

ψ(x2, . . . , xN , x1 +L)=det

(
z
x2
i

1− zi , . . . ,
z
xj+1
i

(1− zi)j , . . . ,
z
x1+L
i

(1− zi)N
)
. (12)
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By cyclic permutation of the columns, we obtain

ψ(x2, . . . , xN , x1 +L)

= (−1)N−1 det

(
z
x1+L
i

(1− zi)N ,
z
x2
i

1− zi , . . . ,
z
xj
i

(1− zi)j−1
, . . .

)

= (−1)N−1 det

(
zLi

(1− zi)N−1
R(i,1), . . . , (1− zi)R(i, j), . . .

)

= (−1)N−1
N∏
k=1

(1− zk) det

(
zLi

(1− zi)N R(i,1), . . . ,R(i, j), . . .
)
.

(13)

This last term is equal to ψ(x1, x2, . . . , xN)=det(R) if z1, . . . , zN are solu-
tions of the N Bethe equations

(zi −1)Nz−Li =−
N∏
k=1

(1− zk) for i=1, . . . ,N. (14)

The vector ψ defined by Eqs. (4, 5) is then an eigenvector of the Markov
matrix M with eigenvalue E given by Eq. (7).

The uniform stationary probability with E=0 corresponds to the very
special solution where all the zi = 1. For all the other solutions of the
Bethe equations, the zi ’s are distinct and are different from 1; hence the
determinant det(R) does not vanish.

To conclude this section, we remark that determinants also appear in
the expression of ψt calculated for an arbitrary initial condition ψ0 on an
infinite open lattice(14) and on a periodic lattice.(13) Although ψt can be
formally obtained from the spectrum of the Markov matrix M and the
projection of ψ0 over the dual eigenvectors, the connexion between these
works and the present paper is not straightforward: firstly the norms of
the eigenvectors defined by Eq. (4) are not obvious to calculate; secondly
the numbers zi obey the Bethe equations in our case whereas they are con-
tinuous complex numbers of modulus 1 in refs. 13 and 14.

4. SYMMETRIES OF THE BETHE EQUATIONS

In this section we show that the Bethe equation (14) have certain
solutions that are distinct but lead to the same eigenvalue E.
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Following Gwa and Spohn,(11) we introduce new variables z̃i=2/zi−1
in the Bethe equation (14) which then become

(1− z̃i )N (1+ z̃i )L−N =−2L
N∏
k=1

z̃k −1
z̃k +1

for i=1, . . . ,N. (15)

The corresponding eigenvalue E is given by

2E=−N +
N∑
k=1

z̃k. (16)

We remark that the right hand side of Eq. (15) is independent of i. We
shall analyse equation (15) in three steps. First, we consider the polyno-
mial equation of degree L for a given complex parameter Y ,

(1−Z)N (1+Z)L−N =Y. (17)

We call (Z1, . . . ,ZL) the roots of this polynomial. In the Appendix, we
explain how the Zi ’s can be labelled so that for a given i, Zi is an ana-
lytic function of Y in the complex plane with a branch cut along the real
semi-axis [0,+∞). Second, we choose a set c={c1, . . . , cN } of N distinct
indices among {1, . . . ,L}. The number of possible sets c is precisely �, the
total number of configurations (Eq. (1)). Finally, for a given choice set c,
we define a function of Y

Ac(Y )=−2L
N∏
k=1

Zck −1
Zck +1

. (18)

The Bethe equation (15) are now equivalent to the self-consistency equa-
tion

Ac(Y )=Y. (19)

For a given choice set c and a root Yc of the last equation, the Zk’s
are determined by Eq. (17). The solutions of the Bethe equations are
then given by z̃k=Zck . The corresponding eigenvalue Ec is obtained from
Eq. (16)

2Ec=−N +
N∑
k=1

Zck . (20)

The eigenvector ψ is given by Eqs. (4, 5), using zi =2/(z̃i +1).
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In order to understand the origin of the spectral degeneracies, we
must consider the case where L (the number of sites) and N (the number
of particles) are not relatively prime. We define the integers p, n and l as
follows

p=gcd(L,N), L=pl, N =pn. (21)

Let (y1, . . . , yp) be the p-th roots of Y (i.e., ypk = Y ) labelled as 0 �
arg(y1)< · · ·<arg(yp)<2π . Equation (17) is thus equivalent to the p poly-
nomial equations of degree l

Qk(Z)= (1−Z)n (1+Z)l−n−yk =0 for k=1, . . . , p. (22)

Thus the set {Z1, . . . ,ZL} of the L solutions of Eq. (17) is made up of p
packages, the kth package being constituted by the l solutions of Qk(Z)=
0. Let us call Pk the set of indices of the kth package: in other words
the solutions of Qk(Z)=0 are the Zi with i ∈Pk. The labelling of the Zi
described in the Appendix shows explicitly that

Pk ={k, k+p, k+2p, . . . , k+L−p}, (23)

i.e., Pk contains the indices i such that i=k modulo p.
For any given package Pk, we have the fundamental equations

∑
i∈Pk

Zi =2n− l, (24)

∏
i∈Pk

Zi −1
Zi +1

=1. (25)

We emphasize that the right hand sides are independent of k. These iden-
tities are derived as follows. We have (−1)nQk(Z)=

∏
i∈Pk

(Z−Zi) because
the Zi ’s with i∈Pk are the roots of the polynomial Qk(Z). The evaluation
of the coefficient of Zl−1 leads to the Eq. (24) except when l=1. Similarly,
the evaluation of Qk(1)/Qk(−1) yields Eq. (25) except when n=0 or n= l.
These exceptions correspond to a trivial model which is either empty, N=
0, or full, N =L, (the spectrum of M is then reduced to the single eigen-
value {0}). In the following, we assume that 0<N<L and so Eqs. (24, 25)
are true.
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We now consider a solution Yc of the Bethe equation (19) associated
with a given choice set c. Assume that there exists a package Pf such that
c contains Pf (i.e., Pf ⊂ c) and that there exists another package Pe such
that c is disjoint from Pe (i.e., Pe∩c=∅). We define a new choice set c′ of
N indices by exchanging the package Pf with Pe, i.e., c′ = (c/Pf )∪Pe. We
now show that the eigenvalues associated with c and c′ are equal. Indeed,
because of Eq. (25), the contribution of Pf in Ac(Y ) and the contribu-
tion of Pe in Ac′(Y ) are both equal to 1 and therefore Ac(Y )=Ac′(Y ), the
other packages contained in c and c′ being the same. Thus Yc is also a
solution of the Bethe equation associated with the set c′, i.e., Ac′(Yc)=Yc.
Besides, thanks to Eq. (24), we notice that the contribution of Pf to the
eigenvalue Ec is equal to the contribution of Pe to Ec′ . Thus, because
the other packages contained in c and c′ are the same, we conclude from
Eq. (20) that Ec=Ec′ . However, the corresponding eigenvectors are differ-
ent: some of the chosen zi ’s being different for c and c′, the functions
ψc(x1, . . . , xN) and ψc′(x1, . . . , xN) are not equal for the � different con-
figurations. We have thus obtained a degenerate eigenvalue Ec=Ec′ asso-
ciated with two different sets c and c′.

To summarise, an eigenvalue corresponding to a choice set c is degen-
erate if there exists at least one package Pf entirely contained in c and at
least one package Pe that does not intersect with c. The fundamental rea-
son is that a full package of Zi ’s does not contribute to the Bethe equa-
tions and adds up to a constant contribution in the eigenvalue formula.
Therefore exchanging the packages Pf and Pe leads to the same eigen-
value but not to the same eigenvector and results in degeneracies in the
spectrum.

As the size of the packages is l, we note that degeneracies are possible
only if l�N �L− l with l=L/gcd(L,N).

5. COMBINATORIAL FORMULAE FOR THE DEGENERACIES

We shall now enumerate the degeneracies in the spectrum of the
Markov matrix M of the TASEP with N particles evolving on a ring of
L sites. We assume the following one-to-one hypothesis: for each choice
set c (among the � possible sets), the self-consistency Eq. (19) has a
unique solution Yc that provides the eigenvalue Ec and the eigenvector ψc.
We further assume that these eigenvectors are linearly independent; this
hypothesis, combined with the fact that the dimension of the configura-
tion space is �, implies that the Bethe equations provide a complete basis
of eigenvectors. We emphasize that the one-to-one hypothesis is stronger
than the assumption that the Bethe basis is complete. We have observed
numerically on small size systems that the functions Ac(Y ) are usually
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contraction mappings (which would imply the one-to-one hypothesis), but
we have not succeeded yet to obtain a rigorous proof. However we will
see that this one-to-one hypothesis allows to count the degeneracies and
that the results are in perfect agreement with numerical diagonalisations.
Thus we are convinced that this hypothesis, or a weaker hypothesis with
the same consequences, is true and that it should be possible to prove it.

With this one-to-one hypothesis, counting degeneracies becomes mer-
ely an exercise in combinatorics. We first introduce some notations. We
recall (see Section 4) that c = {c1, . . . , cN } is a set of N integers cho-
sen amongst {1, . . . ,L}; moreover {1, . . . ,L} is partitioned in p packages
P1, . . . ,Pp, each containing l=L/p integers with p= gcd(L,N) (see Eqs.
(21–23)). For a given set c and for 0 � i� l, we denote by ai the number
of packages Pk with i elements in c (i.e., such that Pk ∩c has i elements).
Thus a0 is the number of packages that do not intersect c: such packages
will be referred to as ‘empty’ packages. The number of the ‘full’ packages
(i.e., entirely included in c) is al . We call partial packages those that are
neither empty nor full. Following this definition, we have

ai �0,
l∑
i=0

ai =p,
l∑
i=0

i ai =N, (26)

p being the total number of packages and N the cardinality of the set c.
We call a= (a0, a1, . . . , al) an admissible partition if it satisfies the relations
in Eq. (26). Equivalently an admissible partition corresponds to a parti-
tion of the integer N in which each term is � l and which contains at most
p terms.

The total number ω(a) of choice sets c corresponding to a given
admissible partition a is

ω(a)= p!
a0!a1!a2! . . . al !

(
l

0

)a0( l
1

)a1( l
2

)a2
. . .

(
l

l

)al
=p!

l∏
i=0

1
ai !

(
l

i

)ai
.

(27)

In this equation, the first factor enumerates the number of choices for
each type of packages among the p available packages. The factors of the
type

(
l
i

)ai give the number of choices of i elements among l for each of
the ai packages. According to the one-to-one hypothesis, ω(a) represents
also the number of eigenvalues associated with the admissible partition a.

We have shown at the end of the previous section that two sets c and
c′ provide a degenerate eigenvalue Ec=Ec′ if they are built from the same
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partial packages and differ only by the selected empty and full packages.
Thus the eigenvalue Ec is d(a) times degenerate with

d(a)=
(
a0 +al
al

)
. (28)

This relation is obtained by enumerating all the choice sets c′ obtained
from c by keeping the partial packages unchanged and choosing al full
packages from the remaining al + a0 packages. We remark that c and c′
correspond to the same admissible partition a. We also emphasize that the
degeneracy order depends only on a and not on the precise choice set c.
To resume, a single order of degeneracy d(a) is associated with the admis-
sible partition a.

Consequently, the ω(a) eigenvalues corresponding to the admissible
partition a form m(a) multiplets of d(a) degenerate eigenvalues, where
m(a) is given by

m(a)= ω(a)

d(a)
= p!
a1!a2! . . . al−1!(a0 +al)!

(
l

1

)a1( l
2

)a2
. . .

(
l

l−1

)al−1
.

(29)

Because the value of Ec depends only on the roots Zi belonging to the
partial packages, we remark that this equation can also be obtained by
enumerating the number of choices for these roots: the first factor counts
the number of choices for the partial packages among the p packages and
the other factors enumerate the choices of i elements among l for each of
the ai partial packages.

In order to know the total number m(d) of multiplets with degener-
acy of order d, we must sum over all admissible partitions a with d(a)=d,

m(d)=
∑

a;d(a)=d
m(a). (30)

In the particular case of half-filling (L=2N ), we have p=N and l=
2, n=1. The admissible partitions and the corresponding degeneracies are
parameterised by a0: Eq. (26) leads to a2 = a0, a1 =N − 2a0 and d(a)=(2a0
a0

)
. The relation between the admissible partitions and orders of degen-

eracies is therefore one-to-one (i.e., two different admissible partitions have
different orders of degeneracies): thus the sum in Eq. (30) reduces to a sin-
gle term. Explicit formulae and numerical results are given in ref. 10.
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For fillings other than 1/2, we have l >2 and two different admissible
partitions can lead to the same order of degeneracy. Equation (30) can not
be further simplified and the enumeration of admissible partitions seems
mandatory. Nevertheless, we can verify the sum rule

�=
∑
d�1

d m(d)=
∑
a

d(a) m(a)=
∑
a

p!
l∏
i=0

1
ai !

(
l

i

)ai
, (31)

where the last sum runs over the admissible partitions and �, defined in
Eq. (1), is the size of the Markov matrix. We use the identity

(x+1)L=
[
(x+1)l

]p=
[

l∑
i=0

(
l

i

)
xi

]p
=

∑
a0,...,al

p!
l∏
i=0

1
ai !

(
l

i

)ai
xiai ,

(32)

where
∑
i ai = p. We remark that � is the coefficient of xN in (x + 1)L,

whereas the coefficient of xN on the r.h.s. is precisely the number of
admissible partitions defined in Eq. (26) and is identical to the r.h.s of
Eq. (31).

In Table I, the explicit example L= 15 and N = 5 is worked out. We
list the admissible partitions, calculate the corresponding order of degen-
eracy from formula (28) and enumerate the corresponding multiplets by
using Eq. (29).

These results are invariant under ‘particle-hole’ exchange: the exclu-
sion process with N particles jumping to the right can be mapped to
a system with L − N particles jumping to the left after performing a
particle-hole exchange. Of course the spectrum of the Markov matrix does
not depend on the jumping direction. Thus, we know a priori that the
Markov matrices of the TASEP with N and L−N particles have the same
spectrum. We now verify this symmetry on the formulae derived above.
Denoting with a ‘tilde’ the quantities for the model with Ñ =L−N par-
ticles, we find that p= p̃ (because gcd(L,N)= gcd(L−N,N)), l̃ = l and
ñ= l−n. By a particle-hole exchange, a partition a= (a0, . . . , al) is trans-
formed to ã where ãi =al−i . Hence, according to Eqs. (28, 29), we obtain
d(ã)=d(a) and m(ã)=m(a), i.e., degeneracies are indeed invariant by the
particle-hole exchange.

6. DISCUSSION

In this section, we draw some consequences of Eqs. (26–30).
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Table I. An example of calculation of the degen-

eracies with L = 15 and N = 5. Each row describes

an admissible partition a = (a0,…,al ) where ai

counts the packages with i chosen roots. In

the first column of this table, we have drawn

one example of a choice set corresponding to

a that selects N = 5 roots amongst the p = 5

packages of l = 3 roots each. The eigenvalues

corresponding to a form m(a) multiplets of order

of degeneracy d(a), where d(a) and m(a) are

given by Eqs. (28, 29). The number of singlets

(d = 1) is obtained by summing the first three

contributions, so 2673 singlets

packages a0 a1 a2 a3 d(a) m(a)

◦◦••◦•◦◦◦◦◦•◦◦• 0 5 0 0 1 243
◦◦◦•••◦◦◦◦◦•◦◦• 1 3 1 0 1 1620
◦◦◦◦•••◦◦◦◦•◦◦• 2 1 2 0 1 810
◦•◦◦◦••◦◦◦◦•◦◦• 2 2 0 1 3 90
◦•◦◦•◦•◦◦◦◦•◦◦• 3 0 1 1 4 15

We first verify that these equations always predict the existence of
singlets (i.e., isolated eigenvalues with degeneracy d = 1). In Eq. (28), we
see that d = 1 if and only if the partition has no empty package (a0 = 0)
or no full package (al =0) or if both a0 =al =0. For instance, the station-
ary eigenvalue 0 is always a singlet thanks to Perron–Frobenius theorem:
in fact, the choice set for the stationary state is c={1, . . . ,N} and hence
each package Pk has n=N/p selected elements. The corresponding par-
tition is thus given by ai = 0 for i �= n and an = p: this implies d = 1, as
expected.

In order to obtain degenerate eigenvalues i.e., admissible partitions
with d�2, we must have a0 �=0 and al �=0, i.e., at least one empty package
and one full package. According to Eq. (26), the existence of degeneracies
is given by the condition l�N �L− l or equivalently by

L�pN �pL−L, (33)

where p=gcd(L,N). Some numerical examples are given in Tables II and
III.
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We now analyse the TASEP at a fixed value of the filling ρ=n/l, n
and l being mutually prime. The two integers (L,N) are parameterised by
the single number p defined in Eq. (21). According to the condition (33),
degeneracies appear when

p�max
(

1
ρ
,

1
1−ρ

)
. (34)

This condition can always be fulfilled when 0< ρ < 1. Moreover, when
the system size L and the number of particles N increase with a given

Table II. Spectral degeneracies in the TASEP at fill-

ing ρ= 1/2: L is the size of the lattice, N the number

of particles; the other columns give m(d) the number

of multiplets with degeneracy d

L N m(1) m(2) m(6) m(20) m(70)

2 1 2
4 2 4 1
6 3 8 6
8 4 16 24 1

10 5 32 80 10
12 6 64 240 60 1
14 7 128 672 280 14
16 8 256 1792 1120 112 1
18 9 512 4608 4032 672 18

Table III. Examples of spectral degeneracies in the TASEP at filling

ρ �= 1/2: L is the size of the lattice, N the number of particles; the other

columns give m(d) the number of multiplets with degeneracy d

ρ L N m(1) m(2) m(3) m(4) m(5) m(15)

1/3 9 3 81 1
12 4 459 12
15 5 2673 90 15
18 6 15849 540 270 1
21 7 95175 2835 2835 189 21

1/4 16 4 1816 1
20 5 15424 20
24 6 133456 240 36

1/5 25 5 53125 1
2/5 15 6 4975 15
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rational ρ, higher and higher orders of degeneracies appear and almost all
the eigenvalues of the spectrum have a degeneracy exponentially large with
L. The admissible partition a= (a0, . . . , al) that maximises ω(a)=d(a)m(a)
(i.e., the total number of eigenvalues associated with a) is given by

ai ∼p
(
l

i

)
ρi(1−ρ)l−i . (35)

The corresponding order of degeneracy increases exponentially with the
size L as d∝DL where

D=
(

1+ v

u

)u/l (
1+ u

v

)v/l
with ν=ρl, v= (1−ρ)l. (36)

For example, D1/2 = 21/4 ≈ 1.189 for ρ = 1/2; D1/3 = (93/28)1/27 ≈ 1.040
for ρ = 1/3, etc... D converges rapidly to 1 when the denominator l of
ρ grows. That explains why, in numerical studies of systems of limited
size, degeneracies are found only when l is rather small, i.e., when ρ is a
‘simple’ fraction.

Similarly, we can also determine the admissible partition a that max-
imises m(a), the number of multiplets. This optimal partition has al = 0
when ρ < 1/2, and a0 = 0 when ρ > 1/2. In either case, this corresponds
to d=1. Thus the most numerous multiplets for ρ �=1/2 are singlets. This
result does not contradict Eqs. (35, 36) in which the product d(a)m(a) is
maximised. For the special case, ρ=1/2, the partition that maximises m(a)
has both a0 and al different from 0 and the corresponding order of degen-
eracy increases(10) as d∝2L/6.

Furthermore, for a given number N of particles, we can search the
values of L where degeneracies appear. Because of the particle – hole sym-
metry (i.e., N⇔L−N ), we need to consider only the case N�L/2. Then,
the condition (33) becomes 2N�L�pN . Because p�N , this implies that
L�N2: only a finite number of L values are possible. In the dilute limit
(when L becomes large and N remains fixed), the TASEP has thus no
degeneracy.

All these results have been derived on the basis of the ‘one-to-one’
hypothesis stated at the beginning of Section 5. It is therefore crucial to
compare our formulae with numerical results. We have numerically diagona-
lised the Markov matrix of the TASEP for certain values of the parameters
(L,N). We use the translation symmetry to split the matrix of size � into
L matrices of size about �/L. The spectrum is then computed by using
Lapack library(1) and degeneracies are counted; details about this proce-
dure are given in ref. 10. We have investigated systematically all the systems
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(L,N) with L�19. For L�20, we have studied the systems (L,N) in which
non-trivial degeneracies are predicted and in which the size of the diagona-
lised matrix remains less than 6000. Results are given in Table II for ρ=1/2
and in Table III for other values of ρ. The numerical results are in perfect
agreement with our analytical predictions, Eqs. (28–30).

We emphasize that, in the systems we have diagonalised numerically,
other “accidental” degeneracies (i.e., degeneracies different from the ones
predicted here) do not appear. Such accidental degeneracies are unlikely
because the TASEP on a periodic ring does not depend on any contin-
uously tunable parameter. In a model with a continuous parameter, such
as the partially asymmetric exclusion process, accidental degeneracies may
appear for special values of the tunable parameter.

The degeneracies for systems much larger than those listed in Tables II
and III can be calculated from the formulae (28–30) for systems with sev-
eral hundred sites and particles. However, the full numerical diagonalisa-
tion of the Markov matrix consumes a computer time of the order of
�3 ∝ (ρρ(1−ρ)1−ρ)−3L. Such a fast growth limits the comparison between
numerical diagonalisations and the exact formulae.

7. CONCLUSION

The spectrum of the Markov matrix of the TASEP on a one-dimen-
sional periodic lattice has a rich structure with multiplets having degen-
eracies of high order. This structure depends on the filling fraction and
presents arithmetical properties related to some particular partitions of
the total number of particles. We have derived analytical formulae for the
spectral degeneracies by analysing the Bethe equations for the TASEP.
These predictions have been verified by numerical calculations and we con-
jecture that the formulae we propose are exact. Our arguments are based
on a ‘one-to-one hypothesis’ which is stronger than assuming the com-
pleteness of the Bethe Ansatz. Although the agreement between numeri-
cal results and analytical predictions is a strong argument in favour of the
one-to-one hypothesis, it is possible that this hypothesis is not satisfied but
that a weaker formulation, leading to the same spectral structure, holds
good. We plan to study the completeness of the Bethe Ansatz and this
one-to-one hypothesis more precisely in a future work.

Our derivation of the spectral structure from the Bethe equations is
rather indirect. In fact, the presence of such high orders of degeneracies
is a strong evidence for hidden symmetries in the model. In other words,
the TASEP should be invariant under a group operating on the configu-
ration space such that each multiplet of a given order of degeneracy is an
irreducible representation of this group. The orders of degeneracies would
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then classify the dimensions of irreducible representations and the number
of multiplets of a given order would represent the multiplicity of a given
irreducible representation in the global representation over the configura-
tion space. By using the techniques of the algebraic Bethe Ansatz, we have
constructed a series of nonlocal operators that act on multiple particles
and that commute with the Markov matrix. We hope that a study of the
representations of these operators will allow us to understand the structure
of the spectrum in a purely algebraic manner without having to analyse
the solutions of the Bethe equations.

The TASEP evolution can be generalized by introducing a fugacity
parameter λ, i.e., by multiplying each non-diagonal term of the Markov
matrix by a factor λ. This parameter has been used to calculate the large
deviation function of the total particle displacement.(4) We verified that
the spectral degeneracies for the ‘TASEP + fugacity’ model are the same
as those found for TASEP. This is not surprising because the properties
of the Bethe equations are not altered by introducing a fugacity and the
arguments given in Sections 4 and 5 can be generalized without any diffi-
culty. However, in the case of the partially asymmetric exclusion process,
in which particles can jump in both directions, the spectrum has a much
simpler structure: eigenvalues are either singlets or doublets. Lastly, for the
TASEP on an open lattice, the spectrum is made only of singlets.

Spectral degeneracies appear in the Markov matrix of the TASEP
when the size L of the system and the number N of particles satisfy some
commensurability relations, (see Eq. (33)). In particular, when L and N

are relatively prime, there are no degeneracies. Thus, the structure of the
spectrum changes abruptly when L and N vary; for example, for L=1000
and N = 200 there are many degeneracies whereas for L= 999 and N =
199 there are none. Likewise, we remark that the dimension � of the
configuration space also varies sharply with L and N . However, “mac-
roscopic” observables, such as the current or correlation functions, are
expected to behave smoothly with L and N and become continuous func-
tions of the density ρ = N/L, when L→ ∞. We emphasize that is no
contradiction between the smoothness of the macroscopic observables and
the discontinuous behaviour of the degeneracies because these observables
can always be written as linear combinations of the eigenmodes of the
evolution matrix and only reflect “averaged” properties of the spectrum.

Nevertheless, these degeneracies are genuine mathematical properties
of the Markov matrix that may reflect some underlying symmetry of the
model. Such symmetries may shed light on the remarkable mathemati-
cal structures that appear in the TASEP, such as its integrability prop-
erties or the appearance of quadratic algebras via the Matrix Product
Ansatz.
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APPENDIX A: LAYOUT OF THE SOLUTIONS OF THE BETHE

EQUATIONS

In this Appendix A, we explain how to label the L solutions
(Z1, . . . ,ZL) of the polynomial equation of degree L

(1−Z)N(1+Z)L−N =Y, (37)

(0 �N �L), in such a way that each Zk(Y ) is an analytic function of the
parameter Y in the complex plane with a branch cut along the real semi-
axis [0,+∞).

A non-zero complex number Y can be written in a unique way as

Y = rL eiφ with 0�φ<2π, (38)

r being a positive real number. This determination of the argument has a
branch cut along [0,+∞). For a given value of r, the complex numbers
Zk belong to the generalized Cassini oval defined by

|Z−1|ρ |Z+1|1−ρ = r, (39)

where ρ = N/L is the filling of the system. As shown in Fig. 1, the
topology of the Cassini oval depends on the value of r with a critical
value

rc=2ρρ(1−ρ)1−ρ : (40)

• for r <rc, the curve consists of two disjoint ovals with N solutions
on the oval surrounding +1 and L−N solutions on the oval surrounding
−1.

• for r=rc, the curve is a deformed Bernoulli lemniscate with a dou-
ble point at Zc=1−2ρ.

• for r >rc, the curve is a single loop with L solutions.

The Cassini ovals are symmetrical only if ρ=1/2.
In order to label the solutions, we start by considering the limit

r→∞ for a given φ. Equation (37) then becomes

ZL∼ rL exp[i(φ−Nπ)]. (41)
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-1 1

Z1
Z2

ZN-1

ZN
ZN+1

ZL-1 ZL

1-2 ρ

Fig. 1. Labelling the roots of the Bethe equations. Here L= 15, N = 6, φ=π/2 and r/rc =
0.8,1,1.2 (see text). The continuous curves are the corresponding Cassini ovals. When r is
fixed and φ varies from 0 to 2π , each Zk slips counterclockwise along a part of the Cassini
oval. When φ is fixed and r varies from ∞ to 0, each Zk travels along a dashed curve from
∞ to points +1 or −1.

The solutions Zk are labelled by

Zk ∼ r exp
[
i

L
[φ−Nπ +2(k−1)π ]

]
with k=1, . . . ,L. (42)

In other words, the Zk are regularly distributed along a large circle of
radius r with

φ−Nπ
L

�argZ1< · · ·<argZL<
φ−Nπ
L

+2π. (43)

This labelling, obtained for large r, is extended by analytic continua-
tion to all values of r, keeping φ fixed. The loci of the Zk are drawn in
Fig. 1 (dashed curves): they are orthogonal to the Cassini ovals. A singu-
larity appears along the branch φ=0 because Z1 and ZN+1 collapse into
each other at the double point Zc when r= rc; we circumvent it by choos-
ing φ=0+.

With this labelling, the solutions are ordered along the Cassini ovals.
Moreover, when r < rc, the solutions (Z1, . . . ,ZN) group together on the
right oval and (ZN+1, . . . ,ZL) on the left oval.
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